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Abstract. Using the perturbation expansion in the rebonding interaction near the surface
molecule limit, a new diagram technique for the Anderson model is proposed. The expression
for the self-energy in the second order in the rebonding interaction is obtained. Approximate
expressions for the self-energy beyond the second order are suggested. The quasiparticle
spectrum for the finite-chain model is calculated and compared with the exact results and others
in the literature.

1. Introduction

Many-body effects play an important role in adsorption phenomena on transition metals.
Considerable progress has been achieved in the understanding of these effects based on
the Anderson–Newns model and using a variety of approaches. In particular, a number of
important results has been obtained for the adatom or impurity density of states (see, e.g., the
review article [1] and the more recent papers [2–6]). The traditional perturbation methods for
the Anderson model use expansion in the hybridization or the Coulomb repulsion. However,
for the hydrogen chemisorption problem the hopping parameter, the Coulomb repulsion and
the bandwidth have the same order of magnitude so expansions in the hybridization and
the Coulomb repulsion as well as a number of decoupling methods are not fully regular
procedures. The more recent theoretical methods have been mainly elaborated for the
magnetic impurity problem. On the other hand, the hydrogen chemisorption problem is
characterized by the finite bandwidth, nondegenerate electron level of an adatom and the
possibility of the existence of bonding and antibonding levels outside the substrate energy
band.

In [7] the one-level impurity Green function has been calculated exactly for finite
bandwidth in the limit when the substrate has a completely filled (or empty) energy band. In
[8] we obtained the exact adatom density of unoccupied states (or the exact adatom density
of occupied states) for a transition metal with an almost filled (or almost empty) energy
band. For these cases the exact dynamic form factor of chemisorbed hydrogen has also
been calculated [9]. However, in the general case the substrate energy band is not almost
filled or almost empty and one needs in an approximate treatment of the Anderson impurity
model.

Unlike conventional theoretical investigations, we use the perturbation expansion in the
rebonding interaction near the surface molecule (SM) limit, which is more appropriate for
the chemisorption problem [10]. The analogous perturbation expansion can also be used for
the magnetic impurity problem in the case when the impurity atom interacts strongly with
the narrow-band alloy. It seems worthwhile to test the known problem by the new method
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and compare our results with others in the literature. As the SM Hamiltonian contains
the Coulomb interaction on an adatom, there exists no ordinary Wick theorem leading to
a straightforward diagrammatic analysis. In order to overcome this difficulty, in [11] we
formulated the generalized Wick theorem for the Anderson model. Using this theorem, a
new diagram technique for the temperature Green function and the thermodynamic potential
has been proposed [11]. Having proved the applicability of the new diagram technique
[11], we present here a simple method for its construction: namely, we consider the sum
of the Coulomb term and the rebonding interaction as a perturbation and use the ordinary
Wick theorem. After that we sum the class of diagrams of a given order in the rebonding
interaction over all orders in the Coulomb repulsion. As a result, we obtain the diagram
technique of [11]. The analogous method of construction of the diagram technique for the
calculation of the chemisorption energy has been proposed in [12].

The perturbation expansion in the rebonding interaction has already been used in [13–
15] for calculation of chemisorption energy up to second order within different models of
the chemisorption process. An approximate expression for the self-energy for the symmetric
strong-coupling case has been obtained in [16]. Below we present the complete expression
for the self-energy in second order in the rebonding interaction. The approximate expressions
for the self-energy beyond second order are also suggested. To check the accuracy of our
expressions, we calculate the adatom density of states and the chemisorption energy for
the finite-chain model of adsorption [14] and compare our results with the exact ones and
the rather accurate results of [17]. The physical nature of the characteristic features of the
adatom density of states is discussed in terms of the transitions between the energy levels
of the SM.

2. The perturbation expansion near the surface molecule limit

The Anderson Hamiltonian has the form

H =
∑
k,σ

εknkσ +
∑
σ

(εanaσ + 1
2Unaσna−σ )+

∑
k,σ

(Vakc
+
aσ ckσ + HC). (1)

We employ here the standard notations [18]; energies of single-particle states are measured
relative to the centre of the substrate energy band; the energy unit is given byB/2 where
B is the bandwidth;V = (

∑
k |Vak|2)1/2. From (1) it follows that the hydrogen 1s state

couples directly only with the normalized state

|b〉 = V −1
∑
k

V ∗ak|k〉 (2)

introduced in [16]. Therefore instead of the basis set|k〉 we consider the equivalent basis
set constructed of the state|b〉 and normalized states|p〉 which are orthogonal to|b〉 and
to each other. Letc+bσ , cbσ and c+pσ , cpσ be the creation and annihilation operators of an
electron in these states. Thus, we have the next canonical transformation:

c+bσ =
∑
k

u∗0kc
+
kσ c+pσ =

∑
k

u∗pkc
+
kσ (3)

whereu∗0k = V ∗ak/V , p 6= 0 and the coefficientsunk(n = 0, p) satisfy the conditions∑
k

unku
∗
n′k = δnn′ . (4)

Then the Anderson Hamiltonian (1) can be rewritten in the form

H = Hsm +Hrm +1H. (5)
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HereHsm is the Hamiltonian of thea–b SM

Hsm =
∑
σ

{εanaσ + εbnbσ + 1/2Unaσna−σ + V (c+aσ cbσ + HC)} (6)

εb = V −2∑
k εk|Vak|2 is the energy of the state|b〉
Hrm =

∑
k,σ

∑
p,p′

εkupku
∗
p′kc
+
pσ cp′σ (7)

is the Hamiltonian of the remaining metal, i.e. the metal from which the state|b〉 is detached,
and

1H =
∑
k,σ

∑
p

εkupku
∗
0kc
+
pσ cbσ + HC (8)

is the rebonding interaction which describes the rebonding of SM to the remaining metal.
Further on, we choose the coefficientsupk of the canonical transformation (3) in such

a way that the states|p〉 will be the eigenstates of the HamiltonianHrm. The analogous
problem has been considered in [19] for the Kondo model. For this purposeHrm should be
diagonalized under the condition (4) or, equivalently, we have to find values ofupk which
minimize the function [15, 19]

E =
∑
k,p

εk|upk|2− 2
∑
k,p

λp|upk|2−
∑
k,p

(µpupku
∗
0k + µ∗pu∗pku0k). (9)

Hereλp andµp are Lagrange multipliers. Taking the derivative with respect tou∗pk, one
obtains [15, 19]

upk = µpVak/[2(εk − λp)V ]. (10)

Then the Lagrange multipliersλp andµp are determined from the conditions (4) and are
given by the equations [15, 19]∑

k

|Vak|2
εk − λp = 0

|µp|2
4
= V 2

[∑
k

|Vak|2
(εk − λp)2

]−1

. (11)

It can be shown [15] that
∑

k εkupku
∗
p′k = λpδpp′ ,

∑
k εkupku

∗
0k = µp/2, and, finally, the

Anderson Hamiltonian takes the form [15]

H = Hsm +
∑
p,σ

λpc
+
pσ cpσ +1H (12)

where the rebonding interaction1H is given by

1H =
∑
p,σ

(µp
2
c+pσ cbσ + HC

)
. (13)

From (12) and (13) it follows thatλp has the physical meaning of the energy of an electron
in the single-particle state|p〉 of the remaining metal andµp/2 is the hopping parameter
between the states|p〉 and |b〉. The energiesλp andµp enter the diagrams for the Green
functions only through the functionχ(z) defined below.

In the case of the one-level impurity embedded in the narrow-band alloy the Hamiltonian
(6) can be treated as the Hamiltonian of the strong-coupling complex consisting of the
impurity and the localized state|b〉. For the chemisorption problem the state|b〉 has the
physical meaning of the group orbital [1], which is localized in the neighbourhood of the
adatom.

Below the diagram technique is constructed for the temperature Green function
Lijσ (β1, β2) = −〈T ciσ (β1)c̄jσ (β2)〉 where i, j = a, b. The Green functionGijσ (β1, β2)
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corresponds to the case1H = 0. Let Lijσ (εF + iω) andGijσ (εF + iω) be the Fourier
transforms ofLijσ (β1, β2) andGijσ (β1, β2) in the limit T → 0. The retarded Green function
Lrijσ (ε) is equal toLijσ (ε+ i0) whereLijσ (z) is the analytic continuation ofLijσ (εF + iω)
from the line segment Rez = εF , 0< Im z <∞ to the upper half of the complex plane. The
sum of the Coulomb repulsion

∑
σ 1/2Unaσna−σ and the rebonding interaction1H (13) is

considered as a perturbation so that nonperturbed Green functionsgijσ (β1, β2), gipσ (β1, β2)

and gppσ (β1, β2) = Gppσ (β1, β2) correspond to the caseU = 0, 1H = 0. If we use
the ordinary Wick theorem and perform the well known partial summation of diagrams,
the lines of Green functionsgijσ (z) are changed to heavy linesGijσ (z). Then the Green
functionLijσ (z) is equal to the sum of the contributions of the connected diagrams which
include (i) the heavy lines of Green functionsGijσ (z) which take into account the effect
of the electron–electron interaction, (ii) the lines of the Coulomb interactionU and (iii)
n verticesµp/2 or µ∗p/2 for each diagram of ordern in 1H . Sincegapσ = gbpσ = 0,
Gpp′σ = δpp′Gppσ , we haven = 2k, andµp/2-vertices subdivide in pairs connected by the
linesGppσ (z). Thus, the Green functionGppσ enters the diagrams only in the combination
χ(z) = ∑p Gppσ (z)|µp|2/4. The temperature Green functionGppσ (z) coincides with the
temperature Green function of the free electronGppσ (z) = (z − λp)−1.

From (11) it follows that the energiesλp are the zeros of the function3(z) =
(πV 2)−1∑

k |Vak|2/(z − εk) and |µp|2/4 = −[π d3(λp) dλ]−1. Then for arbitraryz with
Im z 6= 0 we have

χ(z) = − 1

2π i

1

π

∮
l

dz′

3(z′)(z − z′)− [π3(z)]−1 (14)

where the contourl encloses the pointz and all pointsλp. When |z′| → ∞, 3(z′) ≈
(1/z′ + εb/(z′)2)/π and for the contourl of a large radius the first term in the right-hand
side of (14) is equal toz − εb. Thus,

χ(z) = z − εb − [π3(z)]−1. (15)

If we define the functionϕ(ε) = − Imχ(ε + i0) = Im[π3(ε + i0)]−1, then

ϕ(ε) = π−11(ε)/[12(ε)+32(ε)]. (16)

Here1(ε) is the electronic density of states of the substrate projected into the orbital|b〉
and3(ε) is its Hilbert transform. In the limit of the macroscopically large volume of the
substrate3(z) is the analytic continuation of3(ε) from the interval(0, ∞) of the real axis
to the complex plane with the cut [−1, 1].

From the equations of motion it can be shown that

Gbaσ = Gabσ Gabσ (z) = VGaaσ (z)/(z − εb)
Gbbσ (z) = 1/(z − εb)+ V 2Gaaσ (z)/(z − εb)2. (17)

For the Green functionGaaσ (z) we have

Gaaσ (z) = [z − εa −60(z)− V 2π30(z)]
−1 (18)

where30(z) = [π(z− εb)]−1 and the self-energy60(z) for the symmetric caseεa = −U/2
is given by the equation [17]

60(z) = U/2+M0(z) M0(z) = U2z/[4(z2− 9V 2)]. (19)

For the general case the nonelectrostatic part of the self-energyM0(z) is given in [20].
In figure 1 we show the diagrammatic representation of the Green functionLaaσ (z)

up to fourth order in the rebonding interaction. The Green functionGijσ (z) are depicted
as straight heavy lines. The ends of a line are marked by indicesi and j . A dashed
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Figure 1. A diagrammatic representation of the adatom Green function up to fourth order in
the rebonding interaction.

line corresponds to the functionχ(z). This function describes the effective contribution of
electrons propagating in the statesp. The first three diagrams of figure 1 do not include
explicitly the lines of the Coulomb interactionU . The diagrams which include these lines
can be summed in all orders inU giving the other diagrams of figure 1 as the result.n-
sided shaded polygons depict the vertex functions0k which depend on the electron–electron
interaction. Herek = n/2 and0k ≡ 0 for U = 0. As is obvious from the diagrammatic
point of view and can also be shown analytically [11], the vertex functions0k are expressed
through the Kubo cumulants [21]Gk where the subscriptk indicates that the cumulantsGk

originate from thek-particle adatom Green functions. For example,

02,σσ1(z, z1, z2) = G2,σσ1(z, z1, z2)[Gaaσ (z)Gaaσ1(z1)Gaaσ (z + z1− z2)Gaaσ1(z2)]
−1 (20)

whereG2,σσ1(z, z1, z2) is the Fourier transform of the Kubo cumulant

G2(στ, σ1τ1, σ τ
′, σ1τ2) = 〈T caσ (τ )caσ1(τ1)c̄aσ (τ

′)c̄aσ1(τ2)〉
−δσσ1Gaaσ (τ − τ2)Gaaσ (τ1− τ ′)+Gaaσ (τ − τ ′)Gaaσ1(τ1− τ2). (21)

Here the brackets〈. . .〉 denote the average over the ground state of the doubly occupied
SM.

The diagrams of figure 1 represent also the expansion of the Green functionLaaσ (z)
in the hybridization. In this caseb = a, χ(z) is replaced by0(z) = πV 23(z), the Green
functionGaaσ (z) is replaced by its limit forV → 0 and the brackets in (21) denote the
average over the ground state of the isolated adatom.

The diagrams of figure 1 forLaaσ (z) and the analogous diagrams for the Green function
Lbaσ (z)lead to the next Dyson equations:

Laaσ (z) = Gaaσ (z)+Gabσ (z)χ(z)Lbaσ (z)+Gaaσ (z)16(z)Laaσ (z) (22)

Lbaσ (z) = Gbaσ (z)+Gbbσ (z)χ(z)Lbaσ (z)+Gbaσ (z)16(z)Laaσ (z). (23)

From these equations and expressions (15)–(18) we obtain

Laaσ (z) = [z − εa −60(z)−16(z)− πV 23(z)]−1 (24)

Lbaσ (z) = πV3(z)Laaσ (z). (25)
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The diagrams which give the contribution to16(z) are easily extracted from figure 1.
In particular, the second-order contribution16(2) to 16 is given by the equation

16(2)(z) = −i/(2π)6σ ′
∫
l

02,σσ ′(z, z
′, z′)Gabσ ′(z

′)χ(z′)Gbaσ ′(z
′) dz′ (26)

where the integration is performed over the linel: Rez′ = εF in the complex plane with
the cut [−1, 1]. We present here the expression for16(2) only for the symmetric case
εa = −U/2, εF = 0, ϕ(ε) = ϕ(−ε):

16(2)(z) = − 24x2V 2z

π(z2− 9V 2)2

∫ 0

−1

R(z, ε)ϕ(ε)dε

P (z, ε)(ε + d1)2(ε + d2)2
(27)

wherex = U/4, r = (x2+ 4V 2)1/2, d1 = −r + (x2+ V 2)1/2, d2 = −r − (x2+ V 2)1/2,

R(z, ε) = 3ε6− 24rε5− [5z2− 36(2x2+ 9V 2)]ε4+ 4r[7z2− 3(8x2+ 49V 2)]ε3

+[2z4− 2(30x2+ 121V 2)z2+ 3(16x4+ 256x2V 2+ 803V 4)]ε2

−4[2(x2+ 3V 2)z4− (16x4+ 121x2V 2+ 240V 4)z2

+3V 2(20x4+ 191x2V 2+ 438V 4)]ε/r + 2(4x2+ 9V 2)z4

−(32x4+ 200x2V 2+ 369V 4)z2+ 108V 4(3x2+ 11V 2) (28)

P(z, ε) = (z + ε + d21)(z − ε − d21)(z + ε + dt )(z − ε − dt ). (29)

It is known [22] that the doubly occupied SM has three singlet states|20〉, |21〉 and |22〉
with the energiesE20, E21 andE22 and three triplet states with equal energiesEt = εa+εb.
In (29) d21 = E20 − E21 = −x − r and dt = E20 − Et = x − r. The state|22〉 does
not contribute toP(z, ε) in the symmetric case. At the same time for the symmetric case
d21 = E20 − E4 = E20 − E0 whereE4 andE0 are the energies of an SM having four
and zero electrons, respectively. Using the Lehmann representation for the Green function
Laaσ (z), we conclude that the contribution16(2) to 16 is caused by the transitions from
the perturbed ground state of the doubly occupied SM to the state|21〉, the triplet states
and the states of SM with four and zero electrons plus an extra electron or hole within the
remaining metal.

If we substitute the Green functionLaaσ (z) with 16 = 16(2) into the equation of
[23] for the binding energy, then to second order in the rebonding interaction we obtain
an expression identical to that obtained in [15] using the perturbation expansion for the
chemisorption energy.

To illustrate our new diagram technique, we consider briefly the weak-coupling limit.
In this limit we write the Green functionLaaσ (z) in the form analogous to that of (24):

Laaσ (z) = [z − εa −60wc(z)−16wc(z)− πV 23(z)]−1 (30)

where60wc(z) is the atomic limitV → 0 of 60(z) (19) and for the symmetric case in the
strong-coupling regime(εa < εF , εa + U > εF ) is given by60wc(z) = U/2+M0wc(z),
M0wc(z) = U2/4z. From (26) in the weak-coupling limit to second order in hybridization
for the symmetric case we have

16(2)
wc (z) = U2[0(z)+ 4mwc(z)]/4z

2 (31)

that coincides with the second-order term of equation (16b) of [24]. In (31) we use the
notations of [16], namely,mwc(z) = [0(z) + 1]/2 where1 = 0 for the symmetric case.
In our notations0(z) = πV 23(z). The expression for16(2)

wc can be also obtained for the
asymmetric case.
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3. Approximations for the self-energyΣ(z)

The self-energy is given by6(z) = 60(z) + 16(z). The Green functionLaaσ with
16 = 16(2) has two extra unphysical poles near the pointsz = ±3V because the function
16(2)(z) (27) has an extra factor(z2− 9V 2) in the denominator in comparison withM0(z)

(19). This extra factor can be eliminated by summation of the set of higher-order terms
in the perturbation expansion for16. Using a simple method, we have that to second
order in the rebonding interactionM0 +16 ≈ M0(1+16(2)/M0). Considering the sum
1+ 16(2)/M0 as the starting point of the geometric progression, one obtains that for the
symmetric case the self-energy is approximately given by

6g(z) = U/2+ U2z/4[z2− 9V 2− 416(2)(z)(z2− 9V 2)2/(U2z)]. (32)

(32) can be also obtained by an approximate summation of the infinite series of the self-
energy electron–hole and the electron–electron ladder diagrams formed from the vertex
functions02,σσ ′ .

In the weak-coupling limitM0wc(z) = U2/4z, 16(2)
wc is given by (31). Then the same

approximation for the weak-coupling limit yields

6gwc(z) = U/2+ U2/4[z − 0(z)− 4mwc(z)]. (33)

For the symmetric case the second term in the right-hand side of (33) coincides with (16b)
of [24], which follows exactly from (3.10) of [16]. For the Anderson model the function
m(z) defined formally by (3.10) of [16] may be considered as a more fundamental object
than6(z). In that approach to second order in the rebonding interaction from (24) and
(3.10) of [16] we havemsc(z) = 9V 2/(4z)− 0(z)/4+1m(2)sc (z) where

1m(2)sc = 16(2)(z)(z2− 9V 2)2/(Uz)2. (34)

Substitutingmsc(z) into (33) instead ofmwc(z), we obtain (32) again.
The self-energy6g(z) (32) is caused by the same transitions as16(2)(z). To fourth

order in the rebonding interaction the next types of correction to16(2) appear: (i)
corrections to the numerator of16(2), which are neglected in the present paper; (ii) the
second-order corrections to the energiesd21 + ε and dt + ε entering the denominator of
16(2) which depends strongly onU and have the formα+xβ for the |21〉 state andα−xβ
for the triplet states; (iii) the contribution164(z) to 16(z) caused by the transitions from
the ground state of the doubly occupied SM to the singly or triply occupied states of the
SM plus extra electrons or holes in the remaining metal. To sixth order in the rebonding
interaction we have the contribution166(z) caused by transitions from the ground state of
the remaining metal to its excited states. The complete calculation of164 and166 is very
complicated. We take into account the contributions164 and166 to second order inU and
in all orders inχ(z) by calculating the sum of diagrams which include the vertex functions
04 and06, and retaining only the terms caused by the transitions discussed. During the
calculations we setεa + U/2 = 0 andM0 = 16 = 0 in the denominators of the Green
functionsGijσ (z). As a result, for the symmetric case we have

164(z) = 3U2F

∫ 0

−1
dε1

∫ 0

−1
dε2

(
ρ0(ε1)ρ0(ε2)

z − ε1− ε2+ |εl| +
ρ0(ε1)ρ0(ε2)

z + ε1+ ε2− |εl|
)

(35)

166(z) = U2
∫ 0

−1
dε1 dε2 dε3 ρ0(ε1)ρ0(ε2)ρ0(ε3)

[
1

z − ε1− ε2− ε3
+ 1

z + ε1+ ε2+ ε3

]
(36)

whereρ0(ε) is the adatom density of states,εl is the energy of the localized state andF is
its weight forU = 0, εa = 0. (35) and (36) can also be extracted from the expression for
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6(z) of [25] obtained to second order inU . Finally, we suggest the next approximation
for the self-energy6(z) near the SM limit:

6(z) = 6g(z)+164(z)+166(z). (37)

4. Chemisorption of a one-level atom on a free-atom chain

To check the accuracy of our approximations (32) and (37) for the self-energy, we calculate
the adatom density of states and the chemisorption energy for the exactly solvable model
of a one-level atom being joined to the end of a chain consisting of three metal atoms
[14]. If T is the hopping integral between nearest neighbours in the metal chain, then
χ(z) = zT 2/(z2 − T 2). For the sake of simplicity we consider below only the symmetric
case so that it is sufficient to calculate the quasiparticle levelsεi and their weightsWi on
the adatom only for the positive energies (electrons). We have calculated the parametersα

andβ, which determine the second-order corrections to the energiesd21− T anddt − T ,
taking into account the dependence of the Fermi energy on the spin projectionσ for the
adatom-chain system with the odd finite number of electronsN = 4± 1.

Table 1. Chemisorption energiesE, quasiparticle levelsεi and their weightsWi on the adatom
chemisorbed on a three-atom chain forV = 5, U = 8 andT = 1.

Exact Equation (37) [26] Equation (32)

Level Weight Level Weight Level Weight Level Weight
i E = −7.5395 E = −7.5404 E = −7.5395 E = −7.5396

1 0.9783 0.0208 0.9782 0.0208 0.9783 0.0208 0.9783 0.0208
2 2.9346 1.5× 10−5 2.9394 1.3× 10−5 2.9395 < 10−6

3 4.8996 0.4323 4.8964 0.4318 4.9011 0.4331 4..9005 0.4333
4 6.6926 0.0021 7.0720 0.0022 7.0721 0.0023
5 9.6989 0.0029 9.4113 0.0039 8.9900 0.0050
6 13.0748 0.0087 12.7846 0.0082 11.2731 0.0082 12.7947 0.0075
7 15.9347 0.0321 15.9176 0.0330 15.8205 0.0356 15.9025 0.0334

Table 2. The same as table 1 forV = 3, U = 8 andT = 1.

Exact Equation (37) [26] Equation (32)

Level Weight Level Weight Level Weight Level Weight
i E = −3.7583 E = −3.7719 E = −3.7584 E = −3.7580

1 0.9301 0.0608 0.9292 0.0608 0.9302 0.0608 0.9300 0.0608
2 2.7383 0.0804 2.7748 0.1282 2.7820 0.1089
3 2.9173 0.2401 2.9094 0.1886 2.9225 0.2148 2.8585 0.3176
4 4.4343 0.0106 5.1260 0.0112 5.1281 0.0120
5 6.5907 −3.3× 10−5 5.1063 0.0227
6 8.8880 0.0538 8.2295 0.0555 7.5658 0.0286 8.6363 0.0453
7 10.5216 0.0401 10.4919 0.0557 10.8135 0.0749 10.4766 0.0536

In tables 1 and 2 we compare our results with the exact ones presented in [17] and the
results obtained by the rather accurate method of [26] (these results are also presented in
[17]). The method of [26] is based on the interpolation between the expression for6(z) to
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second order inU [25] and the limit of6(z) for V → 0. From tables 1 and 2 it follows
that a rather good agreement with the exact solution is obtained for the approximation (37)
for 6(z). In the region of low quasiparticle energies our results are also in good agreement
with the results of [17], but in the high-energy region we have obtained a more complex
structure forV = 5, U = 8.

The quasiparticle levels atε1, ε3 and ε7 exist already in the limit16 = 0 and their
interpretation is well known [16, 25]. The levels atε2 andε4 arise from the poles of166(z)

and164(z), respectively. The physical nature of these poles was discussed above. Since
dt−d21 = 2x = U/2, we have obtained two levels atε5 andε6 instead of the single level of
[17] and [26]. These levels correspond to the poles of16(2)(z). At the same time, we have
calculated the weightsW5 andW6 only to second order in the rebonding interaction so the
inclusion of the higher-order correctionsW2 andW4 in the approximation (37) disturbs the
balance between the energiesεi and weightsWi because of the constraint6iWi = 0.5. For
this reason we have obtained better chemisorption energies for approximation (32) than for
approximation (37). The chemisorption energy was calculated using the equation of [19].

For V = 5 andU = 8 the weightsW4 andW5 have the same order because for the
chain model the denominator of the adatom Green functionD(z) depends strongly onz.
Let γi , whereγ4 ∼ χ2 andγ5 ∼ χ , be small parameters which describe the contributions
of the corresponding transitions to the self-energy. SinceWi ∼ 0.5γi/[εiD2 (εi)] and
D2(ε5)� D2(ε4), one hasW4 ∼ W5.

for V = 3 andU = 8 and the approximation (37) the absolute value ofW5 is very small
(the exact solution givesW5 = 0). The negative sign ofW5 indicates that forU > 2V the
perturbation expansion in the rebonding interaction is less applicable than forU 6 2V . The
interesting fact that forV = 3 andU = 8 one obtainsW2 � W4, W2 ∼ W3 is explained
by the resonance between the levelsε3 ≈ V = 3 andε2 ≈ 3T = 3. For the transition
metals having continuous electron density of states the problem of interrelations between
the weightsWi is somewhat simpler: the levelsε2, ε4, ε5 and ε6 spread into continuous
bands and the valuesρi of the adatom density of states within these bands follow on the
whole the natural hierarchyρ5, ρ6 ∼ χ ; ρ4 ∼ χ2; ρ2 ∼ χ3.

5. Conclusion

Using the perturbation expansion in the rebonding interaction near the SM limit, we have
proposed a new diagram technique for the Anderson model. On the basis of this diagram
technique we have obtained an expression for the self-energy to second order in the
rebonding interaction and suggested approximate expressions for the self-energy beyond the
second order. The potential limitations of the method are connected with the worsening of
the accuracy of calculations when the hybridization parameterV decreases or the Coulomb
repulsionU increases. To check the accuracy of our method, we have compared the results
of our calculations with the exact ones [17] obtained for hydrogen chemisorbed at the end
of a chain consisting of three metal atoms. Our results for the quasiparticle spectrum in
the case of the finite-chain model are more accurate in the high-energy region than those
obtained by the method proposed in [26]. Applications to more realistic models are in
progress.
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